Защита от поражения электрическим током

Защита от поражения электрическим током

Защита от поражения электрическим током
СОДЕРЖАНИЕ
08 ноября 2019

Основные меры защиты от поражения электрическим током

Защита от поражения электрическим током0

Непроизвольный контакт человека с электрическим током, превышающим 50 мА, создает реальную угрозу его жизни и здоровью. Поражаются мышечные ткани, органы дыхания, и оказывается неблагоприятное воздействие на сердечную систему.

Чтобы ситуация не стала критической для жизни человека, необходимо быстро отключить подачу электрического тока от электроподающей сети.

Для предотвращения подобной аварийной ситуации рекомендуется провести профилактические защитные мероприятия от поражения электрическим током.

Открытые токоприемники представляют серьезную угрозу жизни человека

Требования и нормативы

В 2002 году в нашей стране введены государственные стандарты по защите человека от поражения электротоком (ГОСТ Р. МЭК 61140 – 2000), которые полностью адаптированы под существующие международные нормы.

На основании этого базового документа разрабатываются нормативные документы и профильные меры безопасности для каждой отрасли народного хозяйства.

Действие положения распространяется на электрооборудование, работающего с напряжением до 1000 А переменного электрического тока, а для постоянного – до 1500 А.Область применения норм – электрические установки и системы.

В этих нормах заложены основные требования по обеспечению предотвращения аварий от поражения электричеством:

  • Недоступность к токоведущим частям электрооборудования;
  • Обязательная изоляция в один или два слоя;
  • Корпусы электрооборудования и силовых установок должны быть заземлены и в обязательном порядке иметь нулевую фазу;
  • Обеспечение надежными и быстродействующими автоматами и устройствами защитного отключения;
  • Создание линий пониженного напряжения (от 42 В и ниже) для электропитания мобильных токоприемников;
  • Устройство защитных разделительных электрических цепей;
  • Установка блокировочных устройств, предупредительной сигнализации, обеспечение электрооборудования защитными надписями и наглядными предупредительными плакатами;
  • Применение защитных приспособлений и индивидуальных средств защиты;
  • Своевременное проведение плановых технических осмотров и профилактических ремонтов эксплуатируемого электрического оборудования, сетей и установок;
  • Организация специального инструктажа персонала по технике безопасности, плановая аттестатация рабочих мест, экзамены на право получения допуска работы для объектов повышенной категории опасности.

Технические термины основных нормативных документов дополняются уточняющими пояснениями:

  • «Прямой контакт» наступает в случае непосредственного прикосновения человека к электрическому проводнику под напряжением. Поражение электричеством может наступить и в случае пробоя изоляции;
  • «Изоляция». Под таким названием понимается не только защитная оболочка провода из полимерных материалов. Изоляция может иметь вид жидкости как, например, масло в трансформаторе, или быть газообразной как промежуток воздуха. Двойная или усиленная изоляция состоит из двух частей, и при испытании каждую из них тестируют отдельно, что позволяет своевременно обнаружить повреждение защитного слоя;
  • «Средства безопасности». Кроме изоляции, к защитным средствам можно отнести конструктивные элементы: полы, наружные и внутренние стены, различные ограждения, закрывающие несанкционированный доступ к токоведущим элементам.
  • Важно! Качественная система безопасности должна строиться на основном принципе: токоведущие элементы не должны быть опасными для жизни человека.

    Основные мероприятия по безопасности

    Проведение ремонтных электроработ требует большой внимательности и ответственности

    Для исключения непредвиденного или косвенного контакта человека с токоведущими частями необходимо обеспечить основные меры защиты от поражения электрическим током. К ним относятся:

    • Обязательное наличие твердой изоляции, предотвращающей непосредственный контакт с оголенными элементами электрических проводников;
    • Ограничительный барьер для доступа посторонних лиц к электросиловому оборудованию и электроустановкам. Защитное ограждение должно быть прочным и оснащено запорными элементами и кодовыми замками;
    • Для исключения физического контакта при осмотре необходимо устанавливать токоведущие части на значительном удалении друг от друга;
    • Использование для электроосвещения силовых электроустановок осветительных приборов, работающих на низком напряжении от 12 до 36 Вт. Такое же напряжение рекомендовано для электропривода необходимого электроинструмента. Для этой цели применяются понижающие трансформаторы с заземлением их вторичной обмотки.

    Кроме основного перечня защитных мер безопасности, во избежание поражения человека электричеством применяются система выравнивания электрических потенциалов и автоматическое устройство отключения (УЗО).

    Устройство автоматического отключения (УЗО)

    Комплекс защитных мероприятий

    Основные защитные профилактические мероприятия от возможного поражения электрическим током условно подразделяются на три группы:

    • Организационные мероприятия;
    • Технические меры;
    • Применение индивидуальных защитных средств.

    Профилактические меры и средства защиты являются приоритетными направлениями защитных мероприятий по предотвращению возможного поражения человека электротоком.

    Совокупность всего комплекса защитных мероприятий направлена на недопущение возникновения аварийных ситуаций, которые могут закончиться электротравмой и несут непосредственную угрозу жизни человека.

    Набор специального ремонтного инструмента с изолирующими рукоятками

    Организационные мероприятия

    Важной составляющей частью мер безопасности от поражения током считается организационная профилактическая работа:

    • Подбор квалифицированного персонала сотрудников для обслуживания электроустановок и силового оборудования. Запрещено использовать необученных лиц и непрошедших обязательный медосмотр, разрешающий допуск к электроработам с повышенной категорией опасности. К работе не допускаются лица, не достигшие 18 лет;
    • Проведение своевременных инструктажей по технике безопасности, специального технического обучения по работе в условиях повышенной электрической опасности, подготовка и сдача экзаменов по технике безопасности при работе с электроустановками;
    • Проведение ознакомительных и наглядных инструктажей по первоочередным действиям при поражении электрическим током;
    • Назначение ответственных лиц за электробезопасность;
    • Ведение специальных журналов ежедневной сдачи и приемки контроля работы электрооборудования и силовых установок;
    • Периодические осмотры, измерения и испытания электрооборудования.

    Нормами предусмотрен регламент профилактического измерения оборудования, работающего в сухом помещении (один раз в два года), а в сырых – каждый год.

    Предельно допустимое значение изоляции должно быть в пределе 0,5 Мом для двух изолирующих слоев и до 2 Мом при усиленной изоляции.

    Если выявлены несоответствия установленным требованиям, то в обязательном порядке рекомендуется провести ремонтные работы.

    Защитные ограждения разрешается снимать только специалистам, имеющим соответствующие навыки. Их квалификация в обязательном порядке подтверждается удостоверением с информацией о группе допуска.

    Примеры предупредительных плакатов

    Технические меры

    К техническим мерам безопасности по недопущению аварийных ситуаций, способных вызвать поражение электрическим током, можно отнести следующие мероприятия:

  • Обязательные применения защитных устройств в виде предохранителей, реле защиты и других средств, которые предохраняют электроустановки и оборудование в момент пиковых нагрузок и защищают от короткого замыкания;
  • Установка электрооборудования в недоступных местах (на высоте более 2 м) и использование защитных ограждений, исключающих контакт токоведущих частей с людьми и животными;
  • Обязательное использование заземляющих контуров и зануления электроустановок;
  • Дополнительная изоляция электрооборудования от корпусов рабочих устройств и машин.
  • Устройство диэлектрических рабочих настилов и специальных изолирующих площадок также можно отнести к техническим защитным мероприятиям.

    Электроработы проводятся с приборами обнаружения электрического тока

    Индивидуальные средства защиты

    Индивидуальные средства защиты от поражения электрическим током: коврики и боты

    Средства защиты от поражения электрическим током подразделяются на индивидуальные основные, дополнительные и вспомогательные.

    Основные средства защиты имеют специальную изоляцию, используются при длительном контакте человека с токоведущими частями электрооборудования с рабочим напряжением:

  • Для работы под напряжением до 1000 Вт – специальные диэлектрические перчатки, изолирующие штанги, ремонтный инструмент с рукоятками, покрытыми изолирующим составом;
  • Специальные определители напряжения.
  • Применение изолирующих средств защиты исключает повреждение человека электрическим током.

    Дополнительные средства защиты предназначены для усиления основных изолирующих элементов:

    • Для работы в электроустановках до 1000 В применяются диэлектрические специальные калоши, коврики, площадки и подставки;
    • Свыше 1000 В – диэлектрические защитные боты, коврики, подставки, перчатки.

    Если при проведении ремонтных или профилактических работ в зоне работающих электроустановок или оборудования отсутствует хоть один компонент дополнительной индивидуальной защиты, то в этом случае запрещается использование основных средств.

    Основные мероприятия по защите от поражения электрическим током нацелены на создание безопасных условий для человека при работе действующих и эксплуатируемых электрических машин, установок и оборудования.

    Видео

    Электробезопасность. Способы защиты от поражения электрическим током

    Защита от поражения электрическим током1

    Для обеспечения электробезопасности при монтаже и эксплуатации электроустановок применяют различные способы и средства защиты, выбор которого зависят от ряда факторов, в том числе и от способа электроснабжения.

    Для обеспечения защиты от поражения электрическим током в электроустановках должны применяться технические способы и средства защиты.

    Выбор того или иного способа или средства защиты (или их сочетаний) в конкретной электроустановке и эффективность его применения зависят от целого ряда факторов, в том числе от:

    • номинального напряжения;
    • рода, формы и частоты тока электроустановки;
    • способа электроснабжения (от стационарной сети, от автономного источника питания электроэнергией);
    • режима нейтрали источника трехфазного тока (средней точки источника постоянного тока) — изолированная нейтраль, заземленная нейтраль;
    • вида исполнения (стационарные, передвижные, переносные);
    • условий внешней среды;
    • схемы возможного включения человека в цепь протекания тока (прямое однофазное, прямое двухфазное прикосновение; включение под напряжение шага);
    • вида работ (монтаж, наладка, испытания) и др.

    Кроме того, по принципу действия, все технические способы защиты разделяются на:

    • снижающие до допустимых значений напряжения прикосновения и шага;
    • ограничивающие время воздействия тока на человека;
    • предотвращающих прямое прикосновение к токоведущим частям.

    Классификация технических способов и средств защиты от поражения электрическим током в электроустановках приведена на рисунке.

    Основными техническими средствами защиты являются:

    • Защитное заземление;
    • Автоматическое отключение питания (зануление);
    • Устройства защитного отключения.

    Защитное заземление

    Заземление снижает до безопасной величины напряжение относительно земли металлических частей электроустановки, оказавшихся па напряжением при повреждении изоляции.

    Защитное заземление – преднамеренное электрическое соединение с землей или ее эквивалентом нетоковедущих частей электроустановки, которые могут оказаться под напряжением вследствие замыкания на корпус и по другим причинам (индуктивное влияние соседних токоведущих частей, вынос потенциала, разряд молнии и т. п.). Эквивалентом земли может быть вода реки или моря, каменный уголь в карьерном залегании и т. п.
    Электрическое сопротивление такого соединения должно быть минимальным (не более 4 Ом для сетей с напряжением до 1000 В и не более 10 Ом для остальных). При этом корпус электроустановки и обслуживающий ее персонал будут находиться под равными, близкими к нулю, потенциалами даже при пробое изоляции и замыкании фаз на корпус.

    Назначение защитного заземления — устранение опасности поражения током в случае прикосновения к корпусу электроустановки и другим нетоковедущим металлическим частям, оказавшимся под напряжением вследствие замыкания на корпус и по другим причинам.
    Различают два типа заземлений: выносное и контурное.

    Выносное заземление характеризуется тем, что его заземлитель (элемент заземляющего устройства, непосредственно контактирующий с землей) вынесен за пределы площадки, на которой установлено оборудование. Таким способом пользуются для заземления оборудования механических и сборочных цехов.

    Выносное заземление называют также сосредоточенным.

    Существенный недостаток выносного заземления – отдаленность заземлителя от защищаемого оборудования, поэтому заземляющие устройства этого типа применяются лишь при малых токах замыкания на землю, в частности в установках до 1 кВ, где потенциал заземлителя не превышает значения допустимого напряжения прикосновения.
    Достоинством выносного заземления является возможность выбора места размещения электродов заземлителя с наименьшим сопротивлением грунта (сырой, глинистый, в низинах и т. п.).
    Необходимость в устройстве выносного заземления может возникнуть в следующих случаях:

    • при невозможности по каким-либо причинам разместить заземлитель на защищаемой территории;
    • при высоком сопротивлении земли на данной территории (например, песчаный или скалистый грунт) и наличии вне этой территории мест со значительно лучшей проводимостью земли;
    • при рассредоточенном расположении заземляемого оборудования (например, в горных выработках) и т. п.

    Контурное заземление состоит из нескольких соединенных заземлителей, размещенных по контуру (периметру) площадки, на которой находится заземляемое оборудование, а также внутри этой площадки. Такой тип заземления применяют в установках выше 1 кВ.

    Контурное заземление называется также распределенным.
    Принцип действия защитного заземления – снижение до безопасных значений напряжений прикосновения и шага, обусловленных замыканием на корпус и другими причинами.

    Это достигается путем уменьшения потенциала заземленного оборудования (уменьшением сопротивления заземлителя), а также путем выравнивания потенциалов основания, на котором стоит человек, и заземленного оборудования (подъемом потенциала основания, на котором стоит человек, до значения, близкого к значению потенциала заземленного оборудования).

    В сетях переменного тока с заземленной нейтралью напряжением до 1 кВ защитное заземление в качестве основной защиты от поражения электрическим током при косвенном прикосновении не применяется, т.к. оно не эффективно .

    Область применения защитного заземления:

    • электроустановки напряжением до 1 кВ в трехфазных трехпроводных сетях переменного тока с изолированной нейтралью (система IT);
    • электроустановки напряжением до 1 кВ в однофазных двухпроводных сетях переменного тока изолированных от земли;
    • электроустановки напряжением до 1 кВ в двухпроводных сетях постоянного тока с изолированной средней точкой обмоток источника тока (система IT);
    • электроустановки в сетях напряжением выше 1 кВ переменного и постоянного тока с любым режимом нейтрали или средней точки обмоток источников тока.

    Заземление электроприборов. Металлические корпуса электроустановок и приборов (стиральные машины, электроводонагреватели, кондиционеры и т.д.) обязательно должны быть заземлены путем соединения с нулевым проводом электросети. Использование металлических труб и других деталей водопровода, отопительной или канализационной сети для заземления (зануления) запрещено.

    Зануление

    Зануление — преднамеренное электрическое соединение с глухо заземленной нейтралью трансформатора в трехфазных сетях металлических нетоковедущих частей, которые могут оказаться под напряжением. В сетях однофазного тока части электроустановки соединяются с глухозаземленным выводом источника тока, а сетях постоянного тока – с заземленной точкой источника.

    При занулении нейтраль заземляется у источника питания. Эта система имеет наибольшее распространение. Оно считается основным средством обеспечения электробезопасности в трехфазных сетях с заземленной нейтралью напряжением до 1000 В.

    В сети с занулением следует различать нулевые защитный и рабочий проводники.
    Для соединения открытых проводящих частей потребителя электроэнергии с глухозаземленной нейтральной точкой источника используется нулевой защитный проводник.

    Нулевым защитным проводником называется проводник, соединяющий зануляемые части потребителей (приемников) электрической энергии с заземленной нейтралью источника тока. Нулевой рабочий проводник используют для питания током электроприемников и тоже соединяют с заземленной нейтралью, но через предохранитель.

    Использовать нулевой рабочий провод в качестве нулевого защитного нельзя, так как при перегорании предохранителя все подсоединенные к нему корпуса могут оказаться под фазным напряжением!

    Зануление необходимо для обеспечения защиты от поражения электрическим током при косвенном прикосновении за счет снижения напряжения корпуса относительно земли и быстрого отключения электроустановки от сети.

    Область применения зануления:

    • электроустановки напряжением до 1 кВ в трехфазных сетях переменного тока с заземленной нейтралью (система TN – S; обычно это сети 220/127, 380/220, 660/380 В);
    • электроустановки напряжением до 1 кВ в однофазных сетях переменного тока с заземленным выводом;
    • электроустановки напряжением до 1 кВ в сетях постоянного тока с заземленной средней точкой источника.

    Принцип действия зануления. При замыкании фазного провода на зануленный корпус электропотребителя образуется цепь тока однофазного короткого замыкания (то есть замыкания между фазным и нулевым защитным проводниками).

    Ток однофазного короткого замыкания вызывает срабатывание максимальной токовой защиты, в результате чего происходит отключение поврежденной электроустановки от питающей сети.

    Кроме того, до срабатывания максимальной токовой защиты происходит снижение напряжения поврежденного корпуса относительно земли, что связано с защитным действием повторного заземления нулевого защитного проводника и перераспределением напряжений в сети при протекании тока короткого замыкания.

    Следовательно, зануление обеспечивает защиту от поражения электрическим током при замыкании на корпус за счет ограничения времени прохождения тока через тело человека и за счет снижения напряжения прикосновения.

    Надежность зануления определяется в основном надежностью нулевого защитного проводника. В связи с этим требуется тщательная прокладка нулевого защитного проводника, чтобы исключить возможность его обрыва.

    Кроме того, в нулевом защитном проводнике запрещается ставить выключатели, предохранители и другие приборы, способные нарушить его целостность. При соединении нулевых защитных проводников между собой должен обеспечиваться надежный контакт.

    Присоединение нулевых защитных проводников к частям электроустановок, подлежащих занулению, осуществляется сваркой или болтовым соединением, причем, значение сопротивления между зануляющим болтом и каждой доступной прикосновению металлической нетоковедущей частью электроустановки, которая может оказаться под напряжением, не должно превышать 0,1 Ом. Присоединение должно быть доступно для осмотра. Нулевые защитные провода и открыто проложенные нулевые защитные проводники должны иметь отличительную окраску: по зеленому фону желтые полосы.

    В процессе эксплуатации зануления сопротивление петли “фаза-нуль” может меняться, следовательно, необходимо периодически контролировать значение этого сопротивления.

    Измерения сопротивления петли “фаза-нуль” проводят как после окончания монтажных работ, то есть при приемо-сдаточных испытаниях, так и в процессе эксплуатации в сроки, установленные в нормативно технической документации, а также при проведении капитальных ремонтов и реконструкций сети.

    Расчет зануления имеет целью определить условия, при которых оно надежно выполняет возложенные на него задачи — быстро отключает поврежденную установку от сети и в то же время обеспечивает безопасность прикосновения человека к зануленному корпусу в аварийный период.

    Защитное отключение

    Защитным отключением называется автоматическое отключение электроустановок при однофазном прикосновении к частям, находящимся под напряжением, недопустимым для человека, и (или) при возникновении в электроустановке тока утечки (замыкания), превышающего заданные значения.

    Назначение защитного отключения – обеспечение электробезопасности, что достигается за счет ограничения времени воздействия опасного тока на человека.

    Защита осуществляется специальныму стройством защитного отключения (УЗО), которое, обеспечивает электробезопасность при прикосновении человека к токоведущим частям оборудования, позволяет осуществлять постоянный контроль изоляции, отключает установку при замыкании токоведущих частей на землю. Для защиты людей от поражения электрическим током применяются УЗО с током срабатывания не более 30 мА.

    Область применения защитного отключения: электроустановки в сетях с любым напряжением и любым режимом нейтрали.
    Наибольшее распространение защитное отключение получило в электроустановках, используемых в сетях напряжением до 1 кВ с заземленной или изолированной нейтралью.

    Принцип работы УЗО состоит в том, что оно постоянно контролирует входной сигнал и сравнивает его с заданной величиной. Если входной сигнал превышает эту величину, то устройство отключает защищенную электроустановку от сети.

    В качестве входных сигналов устройств защитного отключения используют различные параметры электрических сетей, которые несут в себе информацию об условиях поражения человека электрическим током.

    УЗО реагирует на «ток утечки» и в течение сотых долей секунды отключает электричество, защищая человека от поражения электрическим током, оно улавливает малейшую утечку тока и размыкает контакты.

    Конструктивно УЗО бывают двух видов:

    • электронные, зависимые от напряжения питания, их механизм для выполнения операции отключения нуждается в энергии, получаемой либо от контролируемой сети, либо от внешнего источника;
    • электромеханические, независимые от напряжения питания, они дороже электронных УЗО, но обладают большей чувствительностью. Источником энергии, необходимой для функционирования таких УЗО является сам входной сигнал – дифференциальный ток, на который оно реагирует.

    Все УЗО по виду входного сигнала классифицируют на несколько типов:

    • реагирующее на напряжение корпуса относительно земли;
    • реагирующее на дифференциальный (остаточный) ток;
    • реагирующее на комбинированный входной сигнал;
    • реагирующее на ток замыкания на землю;
    • реагирующее на оперативный ток (постоянный; переменный 50 Гц);
    • реагирующее на напряжение нулевой последовательности.

    Применение  УЗО должно осуществляться в соответствии с  Правилами устройства электроустановок (ПУЭ).

    Средства защиты от поражения электрическим током

    Защита от поражения электрическим током2

    Содержание:

    Согласно российской статистики, количество смертельных поражений в результате воздействия электрического тока составляют примерно 2,7% от общего количества всех смертельных случаев.

    Чаще всего причиной травматизма становятся электроустановки, работающие под напряжением до 1000 вольт.

    Это обусловлено их широким применением и контактами с ними большого количества людей, не имеющих специальной подготовки в области электротехники.

    Опасное состояние электрооборудования невозможно определить без специальных приборов. Поэтому при работе с ним огромное значение приобретают средства защиты от поражения электрическим током.

    Воздействие тока на человеческий организм

    Для того чтобы правильно использовать защитные средства, необходимо знать, какое влияние оказывает электрический ток на человека.

    Прежде всего, человеческий организм подвергается термическому, биологическому и химическому воздействию. Довольно часто оно сопровождается вторичными травмами.

    Все это приводит не только к местным повреждениям тканей, но и к общему нарушению функций организма.

    В результате биологического воздействия страдают жизненно важные органы, такие как сердечно-сосудистая и центральная нервная система. В основе их нормального функционирования лежат электрические процессы, поэтому внешнее действие электрического тока приводит к разрушению и физиологической несовместимости с ним.

    Высокочастотные токи могут оказывать термическое воздействие. Источниками могут стать металлические предметы и резисторы, нагретые током, оголенные токоведущие части, электрическая дуга и другие факторы. Под действием тока организм человека подвергается химическому воздействию.

    В его состав входят полярные и неполярные молекулы, анионы и катионы. Все они совершают хаотические непрерывные тепловые движения, обеспечивающие жизнедеятельность всех органов и систем.

    Под действием электрического тока хаотическое движение заменяется строго ориентированным перемещением ионов и молекул, что приводит к нарушению нормальной работе организма.

    Как избежать поражения электротоком

    Мероприятия по обеспечению электробезопасности определены в Правилах устройства электроустановок (ПУЭ). В первую очередь блокируются и ограждаются токоведущие части, ограничивается свободный доступ к ним. Данные средства очень эффективны при случайном попадании в опасную зону или, когда человек соприкоснулся с токоведущими частями оборудования.

    В помещениях, где находятся электроустановки, выделяются опасные зоны путем установки ограждений, высотой не менее 1,7 м. Ограждение открытых площадок должно иметь высоту 2 метра и более.

    Система блокировки предусматривает определенные действия по отключению или снятию напряжения с токоведущих частей. В результате, человек просто не сможет попасть в опасную зону.

    Обычно электроустановки блокируются во время открытия дверей, снятия ограждений и других работ, в процессе которых возникает свободный доступ к опасным местам.

    Одной из действенных мер является использование малого напряжения, до 42 ватт. Оно применяется в переносном и местном освещении, в ручном инструменте и других местах. Кроме того, обеспечивается местное стационарное освещение в помещениях с повышенной и высокой степенью опасности. Замкнутые металлические емкости освещаются светильниками, напряжением, не превышающим 12 вольт.

    Довольно часто используется метод электрического разделения сетей на отдельные участки. С этой целью применяются разделительные трансформаторы, разделяющие сети с нейтралью и сети, подающие питание к приемнику.

    Сети питания и приемника связаны между собой с помощью магнитных полей. При этом сам приемник и участок его сети не связаны с землей.

    Трансформатор обеспечивает питание лишь одного приемника, при силе тока, не превышающей 15 ампер.

    Корпуса приборов и установок оборудуются защитным заземлением. В этом случае их нетоковедущие металлические части соединяются с землей с помощью специальных конструкций. Данные системы устраняют опасность поражения током, если человек неосторожно прикоснулся к токоведущим частям, находящимся под напряжением.

    Если возникла опасность поражения электрическим током, применяется защитное отключение сети в период времени, не превышающий 0,2 секунды. Для этих целей используются специальные устройства защитного отключения.

    Они оборудуются чувствительным элементом, реагирующим на изменяющиеся параметры подконтрольного напряжения. В результате, происходит отключение необходимого участка цепи.

    Срабатывание УЗО происходит в случае непосредственного касания человеком токоведущих частей.

    Специальные защитные средства

    Помимо общих мероприятий, существуют конкретные средства, защищающие от поражения электрическим током. По своему назначению все средства могут быть изолирующими, ограждающими и вспомогательными.

    Основной функцией изолирующих средств является изоляция людей от токоведущих частей установок, находящихся под напряжением.

    Кроме того, обеспечивается изоляция от земли при одновременном соприкосновении с токоведущими и заземляющими частями.

    Основные изолирующие средства защиты, применяемые в установках до 1000 вольт, состоят из диэлектрических перчаток, клещей для измерения тока и замены предохранителей, слесарно-монтажного инструмента, оборудованного изолирующими рукоятками, указателей напряжения.

    Для электроустановок с напряжением более 1000 вольт в качестве основных защитных средств используются измерительные и изолирующие штанги, указатели напряжения и токоизмерительные клещи.

    Кроме того, применяются различные виды съемных изолирующих лестниц и вышек.

    Дополнительные изолирующие средства представлены ботами, ковриками, диэлектрическими галошами, специальными подставками с фарфоровыми изоляторами.

    Основным назначением ограждающих защитных устройств является временное ограждение токоведущих частей, которые находятся под напряжением. Чаще всего практикуется использование барьеров, щитов, ограждений в виде клеток. Применение временных переносных заземлений полностью исключает возникновение напряжения на отключенном оборудовании.

    Назначение вспомогательных средств состоит в защите работающего персонала от случайных падений с высоты, повреждений глаз и других жизненно важных органов. С этой целью применяются страхующие канаты, когти, предохранительные пояса, рукавицы, защитные очки, специальные костюмы и прочее.

    При составлении проекта вопросы безопасности обязательно согласовываются со всеми надзорными органами, в строгом соответствии с ПУЭ.

    Однако в процессе эксплуатации соблюдение мер электробезопасности зависит от конкретных людей – организаторов и исполнителей работ.

    Поэтому средства защиты от поражения электрическим током приобретают огромное значение в деле обеспечения безопасных условий труда.

    Меры защиты от поражения электрическим током (стр. 1 из 2)

    Защита от поражения электрическим током3

    6.4. Меры защиты от поражения электрическим током

    Электробезопасность обеспечивается конструкцией электроустановок, техническими способами и средствами защиты, организационными и техническими мероприятиями.

    Конструкция электроустановок должна соответствовать условиям их эксплуатации и обеспечивать защиту персонала от соприкосновения с токоведущими и движущимися частями , а оборудования – от попадания внутрь посторонних твердых тел и воды.

    Способы и средства обеспечения электробезопасности : защитное заземление, зануление, защитное отключение, выравнивание потенциалов, малое напряжение, изоляция токоведущих частей, электрическое разделение сетей, оградительные устройства, блокировки, предупредительная сигнализация, знаки безопасности, предупредительные плакаты, электрозащитные средства.

    Защитное заземление – это преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковеду щих частей , которые могут оказаться под напряжением в результате повреждения изоляции электроустановки.

    Принцип действия защитного заземления : снижение до безопасных значений напряжения прикосновения и силы тока, проходящего через человека, обусловленных замыканием на корпус.

    При заземлении корпуса происходит замыкание на землю и прикосновение к заземленному корпусу вызывает появление параллельной ветви, по которой часть тока замыкания проходит в землю через тело человека (рис.6.5).

    Сила тока в параллельных цепях обратно пропорциональна сопротивлениям цепей, поэтому ток через человека (Ih ) не опасен.

    Область применения защитного заземления – трехфазные сети напряже нием до 1 кВ с изолированной нейтралью и сети напряжением выше 1 кВ с любым режимом нейтрали.

    Сопротивление заземляющего устройства, используемого для заземления электрооборудования в электроустановках напряжением до 1 кВс изолированной нейтралью должно быть не более 4 Ом.

    При мощности генераторов и трансформаторов 100 кВи менее, заземляющие устройства могут иметь сопротивление не более 10 Ом.

    Заземляющее устройство в электроустановках напряжением выше 1 кВс глухозаземленной нейтралью должно иметь сопротивление не более 0,5 Ом, а в электроустановках с изолированной нейтралью – не более 10 Ом.

    Расчет защитного заземления заключается в определении параметров вертикальных и горизонтальных элементов заземления при условии непревышения допустимого значения сопротивления заземляющего устройства.

    Заземляющее устройство состоит из заземлителя (одного или нескольких металлических элементов, погруженных на определенную глубину в грунт) и проводников, соединяющих заземляемое оборудование с заземлителем.

    Зануление – это преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением.

    Задача зануления : устранение опасности поражения током в случае прикосновения к корпусу и другим нетоковедущим металлическим частям электроустановки , оказавшимся под напряжением вследствие замыкания на корпус . Решается задача быстрым отключением поврежденной электроустановки от сети (рис.6.6).

    Принцип действия зануления заключается в превращении замыкания на корпус в однофазное короткое замыкание (между фазным и нулевым проводами) с целью вызвать большой ток, обеспечивающий срабатывание защиты, и тем самым автоматически отключить поврежденную ус тановку от питающей сети.

    Расчет зануления заключается в определении сечения нулевого провода, удовлетворяющего условию срабатывания максимальной токовой защиты . Такой защитой могут быть плавкие предохранители, магнитные пускатели со встроенной тепловой защитой, контакторы в сочетании с тепловым реле, автоматы, осуществляющие защиту одновременно от токов короткого замыкания и от перегрузки.

    Занулеиие применяют в трехфазных четырехпроводных сетях напряжением до 1 кВ с глухозаземленной нейтралью.

    Защитное заземление или зануление электроустановок является обя зательным в помещениях без повышенной опасности поражения током при номинальном напряжении 380 В и выше переменного тока, а также 440 В и выше постоянного тока .

    В помещениях с повышенной опасностью и особо опасных необходимо заземлять или занулять установки при поминальном напряжении 42 Ви выше переменного тока, а также 110 В и выше постоянного тока. Во взрывоопасных помещениях заземление или зануление установок обязательно независимо от напряжения сети.

    Защитное отключение – это быстродействующая защита, обеспечивающая автоматическое отключение электроустановки при возникновении в ней опасности поражения током.

    При применении этого вида защиты безопасность обеспечивается быстродействующим (не более 0,2 с) отключением аварийного участка или всей сети при однофазном замыкании на землю или на элементы электрооборудования, нормально изолированные от земли, а также при прикосновении человека к частям, находящимся под напряжением.

    Схемы и конструкции устройств защитного отключения .

    Схема защитно го отключения, срабатывающего при появлении напряжения на корпусе относительно земли (рис. 6.7). В схемах этого типа датчиком служит реле напряжения, включенное между корпусом и вспомогательным заземлителем.

    Выравнивание потенциала – метод снижения напряжения прикосновения и шага между точками электрической цепи, к которым возможно одновременное прикосновение или на которых может одновременно стоять человек.

    Для выравнивания потенциала в землю укладывают стальные полосы в виде сетки по всей площади, занятой оборудованием. В производственном помещении корпуса электрооборудования и производственного оборудования в той или иной степени связаны между собой.

    При замыкании на корпус в каком-либо из электроприемников все металлические части получают близкое по величине напряжение относительно земли.

    В результате напряжение между корпусом электроприемника и полом уменьшается, происходит выравнивание потенциала по всей площади помещения и человек, находящийся в этой цепи замыкания, оказывается под сравнительно малым напряжением.

    Малое напряжение – номинальное напряжение не более 42 В ,которое используют для питания электроинструмента, светильников стационарного освещения, переносных ламп в помещениях с повышенной опасностью, особо опасных и на наружных установках. Источниками малого напряжения могут быть специальные понижающие трансформаторы с вторичным напряжением 12-42 В.

    Исправ ность изоляции – это основное условие, обеспечивающие безопасность эксплуатации и надежность электроснабжения электроустановок . Для изоляции токоведущих частей электроустановок применяют рабочую и дополнительную изоляцию .

    Рабочей изоляцией является эмаль и оплетка обмоточных проводов, пропиточные лаки и компаунды и т.д. Дополнительной изоляцией могут быть пластмассовый корпус машины, изолирующая втулка и т.д.

    Электрическая изоляция, состоящая из рабочей и дополнительной, называется двойной . Она считается достаточной для обеспечения электробезопасности, поэтому устройствами с двойной изоляцией разрешается пользоваться без применения других защитных средств.

    Контроль сопротивления изоляции может быть периодическим и непрерывным. Сопротивление изоляции силовых и осветительных электропроводов должно быть не менее 0,5 МОм.

    Электрическое разделение сетей – разделение сети на отдельные электрически не связанные между собой участки с помо щью разделяющего трансформатора , который изолирует электроприемник от первичной сети и сети заземления (рис.6.8).

    От разделяющего трансформатора может питаться только один элек троприемник с защитной плавкой вставкой (сила тока вставки автомата на первичной стороне не должна превышать 15А), вторичное напря жение трансформатора должно быть не выше 380 В .

    Вторичная обмотка трансформатора и корпус электроприемника не должны иметь заземления или связи с сетью зануления.

    В таком случае при прикосновении к частям, находящимся под напряжением или к корпусу с поврежденной изоляцией не создается опасность, поскольку вторичная цепь коротка и сила токов утечки в ней и емкостных токов мала.

    Защитное разделение сетей используют в электроустановках напряжением до 1000 В, эксплуатация которых связана с особой и повышенной опасностью (передвижные электроустановки, ручной электрифицированный инструмент и т.п.).

    Для исключения случайных прикосновений к токоведущим частям электроустановок применяют оградительные сплошные и сетча тые устройства .

    Сплошные ограждения обязательны для электроустановок, разме щаемых в производственных (неэлектрических) помещениях . Сетчатые ограждения применяют в электроустановках, доступных квалифицированному электротехническому персоналу .

    В случаях, когда изоляция и ограждение токоведущих частей является нецелесообразным (например, воздушные линии высокого напряжения), их размещают на недоступной для прикосновения высоте. Внутри производственных помещений неогражденные неизолированные токоведущие части прокладывают па высоте не менее 3,5 м от пола.

    Блокировка – защита от проникновения в опас ную зону, где находится установка . Она позволяет автоматически снимать напряжение со всех элементов установки, приближение к которым угрожает жизни человека.

    Блокировку применяют в элект рических аппаратах, при обслуживании которых должны соблюдаться повышенные меры безопасности , в электрооборудовании, расположенном в доступных для неэлектротехнического персонала помещениях.

    Средства и меры защиты от поражения электрическим током

    Защита от поражения электрическим током4

    Главным защитником от поражения электрическим током выступает знание, которое должно быть заложено в вашей голове. И Вы должны уметь применять эти знания в простых и сложных ситуациях.

    Работу в электроустановках может производить специально обученный персонал. То, что человек обучен, можно понять по специальному удостоверению по охране труда. Внутри этого удостоверения будут сроки и объемы проверки специальных знаний по охране труда. Но это на производстве. Где без удостоверения ни наряда, ни инструктажа по тб, ни соответственно работы.

    А как определить профпригодность электрика, который например будет проводить вам домашнюю проводку? Если у Вас есть проверенные приемчики на этот счет, напишите их в комментариях, будет интересно послушать ваше мнение.

    Теперь непосредственно к теме статьи. Электробезопасность обеспечивается с помощью следующих защитных мер от поражения электрическим током:

    • зануление
    • заземление
    • узо
    • использование малых напряжений. Например, светильников на 12В вместо 220В в особо опасных местах работы
    • контроль сопротивления изоляции. Измеряя мегаомметром сопротивление изоляции мы можем определить ухудшение ее состояния и определить вероятность появления замыкания на землю или тока короткого замыкания
    • компенсация емкостной составляющей тока замыкания на землю в сетях выше 1кВ. Уменьшая емкостную составляющую тока замыкания на землю с помощью индуктивных катушек (дугогасящих), включенных между нейтралью и землей в трехфазных сетях
    • защита от случайного прикосновения. Люди всегда будут нечаянно касаться оголенных проводов и шин, потому что это люди. Они бывают невнимательными, рассеянными. Но число касаний можно уменьшить с помощью защитных средств:
      • защитные крышки, сетки, деревянные ограждения
      • блокировки механические и электрические. Например, стенд для испытания камер элегазовых выключателей на производстве или лаборатория на ТЭЦ, где проверяют электроинструмент. И там и там испытательный пульт и место, где находится источник высокого напряжения разделены как бы на два помещения. И между ними сетка (стекло) и дверь. И есть там блокировка – пока дверь не будет закрыта, напряжение не сможешь подать. Такие способы реально помогают обезопаситься, когда надо испытать например 100 перчаток. В монотонности можно потерять концентрацию и допустить ошибку
      • расположение токоведущих частей на недоступном расстоянии. Хотя встречаются русны, где шины над головой. А с ростом в два метра – стоит случайно поднять руку вверх и привет фаза А, например
      • На фото ниже ситуация получше, но всё равно, опасность так и витает в воздухе.Определены следующие допустимые расстояния до токоведущих частей и как видим до 1000В в распредустройствах это расстояние не нормируется:

    • двойная изоляция. Это такая изоляция, когда токоведущая жила помещена в один слой изоляции – основная изоляция. А сверху еще слой дополнительной изоляции. В таком случае, если основная изоляция испортится (а это повреждение не особо можно заметить человеческим зрением), дополнительная изоляция защитит от тока. Провода в электроприборах имеют двойную изоляцию, или электротехнические отвертки.
    • к организационным мероприятиям, обеспечивающим безопасность при проведении работ относится производство работ по наряду, распоряжению или в порядке текущей эксплуатации. В этих документах на производство работ указываются мероприятия по ТБ
    • использование электротехнических защитных средств. Вот и подошли к теме статьи

    Электротехнические защитные средства

    Вышеописанные защитные меры и мероприятия можно отнести к косвенным, которые установлены и работают всегда, даже, если рядом никого нет. Кроме них существуют и те, которые устанавливаются во время проведения работы и убираются по её окончании.

    Основные и дополнительные средства защиты от электрического тока

    Изоляция основных защитных средств может выдерживать рабочее напряжение и ими можно касаться токоведущих частей. Изоляция дополнительных защитных средств не рассчитана на рабочее напряжение и используется как дополнительная мера защиты к основному защитному средству.

    Средства защитыДо 1кВВыше 1кВ

    Основные

    • диэлектрические перчатки
    • изолирующие штанги
    • изолирующие клещи
    • электроизмерительные клещи
    • инструмент с изолирующими рукоятками
    • указатели напряжения
    • изолирующие штанги
    • изолирующие клещи
    • электроизмерительные клещи
    • указатели напряжения
    • средства для ремонтных работ под напряжение выше 1кВ

    Дополнительные

    • диэлектрические галоши
    • диэлектрические ковры
    • изолирующие подставки
    • диэлектрические перчатки
    • ковры и боты
    • изолирующие подставки

    Кроме вышеописанных существуют ограждающие и предохранительные защитные средства. Ограждающие: щиты, изолирующие накладки, переносные заземления и предупреждающие плакаты.

    Предохранительные: каски, очки, рукавицы, противогазы, когти, страховочные канаты, монтерские пояса. А для защиты от электрического поля сверхвысокого напряжения (дуги) используют переносные экранирующие устройства – экраны.

    Диэлектрические перчатки в установках до 1кВ применяются как основное защитное средство, а в установках выше 1кВ – как дополнительное. Следует следить за отсутствием надрывов в перчатке, например, надув её и смотря, выходит ли воздух. Также они естественно должны быть испытаны как и другие СИЗ и иметь печать.

    Диэлектрические ковры и галоши защищают от шагового напряжения и являются дополнительным СИЗ.

    Изолирующие подставки служат не только основным средством доступа невысоких релейщиков в релейные отсеки ячеек в РУ-6кВ, но и дополнительным средством защиты от поражения электрическим током.

    Изолирующие штанги в зависимости от класса напряжения имеют различную длину. Они состоят из трех частей: ручка, рабочая часть и изолированная часть.

    Номинальное напряжение электроустановки, кВМинимальная длина изолирующей части, мМинимальная длина рукоятки, м

    до 1кВ
    не нормируется
    не нормируется

    2-15
    0,7
    0,3

    15-35
    1,1
    0,4

    35-110
    1,4
    0,6

    150
    2,0
    0,8

    220
    2,5
    0,8

    330
    3,0
    0,8

    400, 500
    4,0
    1,0

    Переносные заземления устанавливаются при работах на отключенном оборудовании для защиты персонала от последствий возможного включения оборудования.

    Накладывается, после проверки отсуствия напряжения. Затем сначала на землю, затем на фазы.

    А вот и собственно сами заземления:

    Клещи изолирующие и электроизмерительные созданы для разных целей.

    Изолирующими извлекают предохранители, например под нагрузкой.

    Электроизмерительными измеряют различные величины, например токовыми клещами – величину тока. И измерения силы тока производят без разрыва проводов прямо на работающем оборудовании.

    Ну и плакаты. Они бывают разные: запрещающие, разрешающие – почти как в ПДД.

    Физические свойства дугового разряда

    Как проверить узо на срабатывание

    Средства защиты от поражения электрическим током

    Защита от поражения электрическим током5

    При работе в электроустановках до и выше 1000В используются средства защиты от поражения электрическим током.

    Персонал, обслуживающий электроустановки отрасли и потребителей электроэнергии, должен быть обеспечен всеми необходимыми средствами защиты, обучен правилам применения и обязан пользоваться ими для обеспечения безопасности работы.

    Средства защиты должны находиться в качестве инвентарных в помещениях электроустановок (распределительных устройствах, цехах электростанций, на трансформаторных подстанциях, в распределительных пунктах электросетей и т. п.) или входить в инвентарное имущество оперативно-выездных бригад, бригад эксплуатационного обслуживания, передвижных высоковольтных лабораторий и т. п., а также выдаваться для индивидуального пользования.

    Все находящиеся в эксплуатации электрозащитные средства и предохранительные пояса должны быть пронумерованы, за исключением касок защитных, диэлектрических ковров, изолирующих подставок, плакатов и знаков безопасности, защитных ограждений, штанг для переноса и выравнивания потенциала. Допускается использование заводских номеров.

    В подразделениях предприятий и организаций отрасли и потребителей электроэнергии необходимо вести журналы учета и содержания средств защиты.

    Наличие и состояние средств защиты должно проверяться осмотром периодически, но не реже 1 раза в 6 мес. лицом, ответственным за их состояние, с записью результатов осмотра в журнал.

    Средства защиты, выданные в индивидуальное пользование, также должны быть зарегистрированы в журнале.

    Средства защиты, кроме изолирующих подставок, диэлектрических ковров, переносных заземлений, защитных ограждений, плакатов и знаков безопасности, полученные для эксплуатации от заводов-изготовителей или со складов, должны быть проверены по нормам эксплуатационных испытаний.

    Изолирующими электрозащитными средствами следует пользоваться по их прямому назначению в электроустановках напряжением не выше того, на которое они рассчитаны (наибольшее допустимое напряжение).

    Основные и дополнительные электрозащитные средства рассчитаны на применение в закрытых электроустановках, а в открытых электроустановках и на воздушных линиях электропередачи — только в сухую погоду.

    В изморось и при осадках пользоваться ими запрещается. На открытом воздухе в сырую погоду могут применяться только средства защиты специальной конструкции, предназначенные для работы в таких условиях.

    Изготавливают, испытывают такие средства защиты и пользуются ими в соответствии с техническими условиями и инструкциями.

    Изолирующие электрозащитные средства делятся на основные и дополнительные. Ими следует пользоваться по их прямому назначению в электроустановках напряжением не выше того, на которое они рассчитаны.

    К основным электрозащитным средствам в электроустановках напряжением выше 1000В относятся:

    – изолирующие штанги всех видов;

    – изолирующие и электроизмерительные клещи;

    – указатели напряжения;

    – устройства и приспособления для обеспечения безопасности труда при проведении испытаний и измерений в электроустановках (указатели напряжения для проверки совпадения фаз, устройства для прокола кабеля, указатели повреждений кабелей и т.п.);

    – прочие средства защиты, изолирующие устройства и приспособления для ремонтных работ под напряжением в электроустановках напряжением 110кВ и выше (полимерные изоляторы, изолирующие лестницы и т.п.).

    К основным электрозащитным средствам в электроустановках напряжением до 1000В относятся:

    – изолирующие штанги;

    – изолирующие и электрозащитные клещи;

    – указатели напряжения;

    – диэлектрические перчатки;

    – изолирующий инструмент.

    К дополнительным электрозащитным средствам в электроустановках напряжением выше 1000В относятся:

    – диэлектрические перчатки;

    – диэлектрические боты;

    – диэлектрические ковры;

    – изолирующие поставки и накладки;

    – изолирующие колпаки;

    – штанги для переноса и выравнивания потенциала.

    К дополнительным электрозащитным средствам в электроустановках напряжением до 1000В относятся:

    – диэлектрические галоши;

    – диэлектрические ковры;

    – изолирующие подставки и накладки;

    – изолирующие колпаки.

    Кроме перечисленных средств защиты в электроустановках применяются средства индивидуальной защиты (СИЗ) следующих классов:

    – средства защиты головы (каски защитные);

    – средства защиты глаз и лица (очки и щитки защитные);

    – средства защиты органов дыхания (противогазы и респираторы);

    – средства защиты рук (рукавицы);

    – средства защиты от падения с высоты (пояса предохранительные и канаты страховочные).

    При использовании основных электрозащитных средств достаточно применение одного дополнительного за исключением особых случаев.

    Перед каждым применением средства защиты персонал обязан проверить его исправность, отсутствие внешних повреждений, загрязнений, проверить по штампу срок годности.

    Пользоваться средствами защиты с истёкшим сроком годности запрещается.

    Особенности поражения электрическим током:

    1. Отсутствие внешних признаков наличия напряжения на токоведущих частях. Поэтому нельзя прикасаться к ним, не проверив предварительно отсутствие напряжения.

    2. Тяжесть исхода, т.е. электротравмы достаточно тяжелы.

    3. Токи промышленной частоты 10÷25мА вызывают непроизвольные судорожные сокращения мышц. Поэтому после электротравмы возникает вероятность механического повреждения, т.к. человек может попасть в движущийся механизм.

    Действие электрического тока на организм:

    1. Биологическое.

    Нарушение биологических функций, сокращение мышц.

    2. Электролитическое.

    Разложение органической жидкости в организме.

    3. Термическое.

    Нагрев, ожоги, перегрев сердца или мозга.

    Электротравма – местные поражения тканей и органов электрическим током (эл. удары, эл. шок).

    Степени поражения электрическим током:

    I. 10 мА Притягивание

    II. 30÷40 мА Сбои дыхания

    III. 60÷80 мА Перебои дыхания и его остановка. Потеря сознания.

    IV. 100 мА Остановка сердца (фибрилляция сердца). Клиническая смерть.

    1,5÷2 мА – порог чувствительности электрического тока человеком.

    Условно все электротравмы можно свести к следующим видам:

    местные электротравмы – ярковыраженные местные нарушения целостности тканей, местные повреждения организма, вызванные воздействием электрического тока или электрической дуги;

    общие электротравмы (электрические удары) – травмы, связанные с поражением всего организма из-за нарушения нормальной деятельности жизненно важных органов и систем человека.

    Комментировать
    0
    Комментариев нет, будьте первым кто его оставит

    ;) :| :x :twisted: :sad: :roll: :oops: :o :mrgreen: :idea: :evil: :cry: :cool: :arrow: :P :D :???: :?: :-) :!: 8O

    Это интересно